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What’s in a compiler?

foo.c foo.bin

Goals for this lecture
� Understand the importance of “names” RSSA Form

� Introduce an interesting optimization problem Rregister allocation
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1 SSA Form
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Static Single Assignment (SSA)

¿SSA?

� Assignment: variable’s definition (e.g., x in ‘‘x=y+1’’)

� Single: only one definition per variable

� Static: in the program text

BU ZO

6 / 54



Referential transparency

Example (y and z are not equal)

opaque (context dependent) referentially transparent
SSA form

x = 1;
y = x + 1;
x = 2;
z = x + 1;

x1 = 1;
y = x1 + 1;
x2 = 2;
z = x2 + 1;

Referential transparency

� value of variable independent of its position

� may refine our knowledge (e.g., ‘‘if (x==0)’’) but underlying
value of x does not change
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Informal Semantics

Each variable v is:
� used only once as v = ... (target/definition/left-hand-side)
� can be many times as ... = v (source/use/right-hand side)
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x = input();
if (x == 42) {
y = 1;
} else {
y = x + 2;
}

print(y);

x ← input()
(x = 42)?

y ← 1

A

y ← x +2

B

print(y ) CFG
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Each variable v is:
� used only once as v = ... (target/definition/left-hand-side)
� can be many times as ... = v (source/use/right-hand side)

x = input();
if (x == 42) {
y1 = 1;
} else {
y2 = x + 2;
}
y3 = φ(y1,y2);
print(y3);

x ← input()
(x = 42)?

y1← 1

A

y2← x +2

B

y3←φ(A : y1, B : y2)
print(y3)

ZO GA

8 / 54



Informal Semantics

x ← input()
(x = 42)?

y1← 1

A

y2← x +2

B

y3←φ(A : y1, B : y2)
print(y3)

Introduction of φ-functions:

� to fix the ambiguity; introduces
y3 which takes either y1 or y2

� placed at control-flow merge
points i.e., head of basic-blocks
that have multiple predecessors

� n parameters if it has n incoming CFG paths

� represented as a0 = φ(a1, . . . , an)
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Questions on SSA

≈ 5 min to answer the following questions:

Is it possible to have more than one φ-function in a basic block?

How can you execute code containing φ-functions on a machine?
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Informal Semantics

� multiple φ-functions executed simultaneously:
a = φ(a, b)
b = φ(b, a)

� φ-functions not directly executable (IR only: for static analysis)

� φ-functions removed before assembly code generation
Rcopy instructions insertion
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Informal Semantic

� SSA is not Dynamic Single Assignment (DSA or SA)

� Construction: insert φ-function where multiple reaching defs
converge; version variables x and y (integer subscripts);

x = 0;
y = 0;
while (x<10) {
y = y + x ;
x = x + 1;
}
print (y);

x1 ← 0
y1 ← 0

x2←φ(x1,x3)
y2←φ(y1, y3)
(x2 < 10)?

y3← y2+x2

x3← x2+1

print(y2)

MEU GA
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Comparison with Classical Data Flow Analysis

� During actual program execution, information flows between variables

� Static analysis captures this behavior by propagating abstract
information along CFG

� Can be propagated more efficiently using a functional or sparse
representation such as SSA

� Constant propagation: definitions ≡ set of points where information
may change; associate information with variable names rather than
variables × program points
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Comparison with Classical Data Flow Analysis

Null pointer analysis

Determine statically if variable can contain null value at run-time.

� Propagates from defs to uses (via def-use links); avoid program points
where information does not change or not relevant

� Results are more compact
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(current bounding box.south west) rectangle (current bounding box.north east);

y = 0; x = 0

y = y +1

x = 1

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0,>]

[x , y ] = [0, �C0]
[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [�C0, 0]

[x , y ] = [>,>]

(current bounding box.south west) rectangle (current bounding box.north east);

y1 = 0, x1 = 0

y2 =φ(y3, y1)
y3 = y2+1

x2 = 1

y4 =φ(y3, y1, y1)
x3 =φ(x1,x1,x2)
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[y4,x3] = [>,>]

dense SSA based
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Outline

1 SSA Form

2 Register allocation
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French folklore: Les Shadoks
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16 / 54



Shadoks have a very small brain
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The shadoks at the library
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What is register allocation?

Assign variables to memory
locations

� Registers: , , , . . .

� Memory: infinite

Rules of the game

� two interfering variables
à different registers

� not enough registers
à spill to memory

a← 3425
n← 0

a 6= 1 ?

n← n + 1
a even ?

a← a/2 a← 3× a + 1

print n

BU GA MEU
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What is register allocation?

Assign variables to memory
locations

� Registers: , , , . . .

� Memory: infinite

Rules of the game

� two interfering variables
à different registers

� not enough registers
à spill to memory

Plus constraints:

� register constraints

� pre-colored variables

� register pairing,
aliasing,. . .
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Chaitin et al. model

Live-in: k j

g := mem[j+12]

h := k-1

f := g+h

e := mem[j+8]

m := mem[j+16]

b := mem[f]

c := e+8

d := c

k := m+4

j := b

Live-out: d k j

Live-ranges
g

h

f

e

m

b

c

d

g

h

f

e

m

b

c

d

k
j

jk
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Chaitin et al. model

Interference graph

k

j

g

h

f

e

m
b c

d
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g

h

f

e

m

b

c

d

g
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e
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Coloring a basic block

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan
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“Spilling easier on a BB than on a general CFG”

Basic Block

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

General control flow graph

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

Interference graph

k

j

g

h

f

e

m

c

d

b

� Coloring test

� Greedy coloring

Demo: greedy coloring in ubigraph
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Coloring the interference graph: the greedy way

Register allocation is modeled as coloring the interference graph of the
program.

Problem

Graph-k-coloring is NP-complete (for k ≥ 3), and any interference graph
can arise in programs. (Chaitin et al.’s proof)

à register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.’s greedy scheme.
Greedy scheme

If coloring fails, usually spill.
Disadvantages:

� The scheme might fail even when there is a solution.

à need to spill more than necessary

� A variable is supposed to be in exactly one register.

à restriction on the coloring
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23 / 54



Coloring the interference graph: the greedy way

Register allocation is modeled as coloring the interference graph of the
program.

Problem

Graph-k-coloring is NP-complete (for k ≥ 3), and any interference graph
can arise in programs. (Chaitin et al.’s proof)

à register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.’s greedy scheme.
Greedy scheme

If coloring fails, usually spill.

Disadvantages:

� The scheme might fail even when there is a solution.

à need to spill more than necessary

� A variable is supposed to be in exactly one register.

à restriction on the coloring

BU BU MEU

23 / 54



Coloring the interference graph: the greedy way

Register allocation is modeled as coloring the interference graph of the
program.

Problem

Graph-k-coloring is NP-complete (for k ≥ 3), and any interference graph
can arise in programs. (Chaitin et al.’s proof)

à register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.’s greedy scheme.
Greedy scheme

If coloring fails, usually spill.
Disadvantages:

� The scheme might fail even when there is a solution.

à need to spill more than necessary

� A variable is supposed to be in exactly one register.

à restriction on the coloring

BU BU MEU

23 / 54



Coloring the interference graph: the greedy way

Register allocation is modeled as coloring the interference graph of the
program.

Problem

Graph-k-coloring is NP-complete (for k ≥ 3), and any interference graph
can arise in programs. (Chaitin et al.’s proof)

à register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.’s greedy scheme.
Greedy scheme

If coloring fails, usually spill.
Disadvantages:

� The scheme might fail even when there is a solution.
à need to spill more than necessary

� A variable is supposed to be in exactly one register.
à restriction on the coloring

BU BU MEU

23 / 54



Coloring, spilling are inter-dependent

Coloring Spilling

1 coloring fails

2 less nodes to color
change in code
(load/store)

3 decrease degree of
neighbors

4 coalescing = giving same
color to two nodes

5 spilling a coalesced node
is more expensive
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Coloring, spilling and coalescing are inter-dependent

Coloring Spilling

1

2

Coalescing3

1 coloring fails

2 less nodes to color
change in code
(load/store)

3 decrease degree of
neighbors

4 coalescing = giving same
color to two nodes

5 spilling a coalesced node
is more expensive
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Graph coloring allocators in one phase

� Chaitin-Briggs allocator (Briggs, Cooper, Torczon)

� Iterated Register Coalescing (Appel, George)

build simplify coalesce freeze pot. spill select act. spill

Drawbacks of register allocation in one phase

� code more complicated to maintain

� improvements must take the whole allocator into account

� harder to “prioritize” a problem

BU ZO BU
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Separating register allocation in two phases

Allows to optimize problems separately:

� priority is given to spilling

� then, coloring/coalescing (without “useless spills”)

How to separate register allocation in two phases?

Here comes the SSA form. . .

Theorem

The interference graph of a program under strict SSA form is chordal.

BU ZO ZO

26 / 54



Separating register allocation in two phases

Allows to optimize problems separately:

� priority is given to spilling

� then, coloring/coalescing (without “useless spills”)

How to separate register allocation in two phases?

Here comes the SSA form. . .

Theorem

The interference graph of a program under strict SSA form is chordal.

BU ZO ZO

26 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a b c

Chordal graphs are perfect and easy to color.
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Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses
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Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses

Example (Straight code converted to SSA form)

a← . . .
...

. . .← a
...

a← . . .
...

. . .← a

a1 ← . . .
...

. . .← a1
...

a2 ← . . .
...

. . .← a2
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Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses

Example (Conditional code converted to SSA form)

if (. . . )

a← 1 a← 2

· · · ← a

if (. . . )

a1 ← 1 a2 ← 2

a3 ← φ(a1, a2)
· · · ← a3
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Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses

Example (strict SSA or SSA with dominance property)

if (. . . )

a1 ← 1 . . .

· · · ← a1

if (. . . )

a1 ← 1 . . .

a2 ← φ(a1,⊥)
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Proof that strict SSA interference graphs are chordal

Theorem

The interference graph of a program under strict SSA form is chordal.

Proof.

a

b

c

d

e

� dominance property

� a and b interfere ⇒ def (a) dominates def (b)
(or the converse)

� direct each edge with dominance

� def (d) is dominated by def (c) and def (e)

� c and e are live at def (d)
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“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b
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Strict SSA programs are easy to color

Chordal graphs are perfect graphs, hence easy to color. We proved more:

Theorem

Chordal graphs are colorable using Chaitin et al. greedy scheme.
They are greedy-k-colorable.

General program:
NP-complete

strict SSA program:
greedy-k-colorable

Under strict SSA, Maxlive, the maximum number of simultaneously live
variables, is the coloring indicator:

Maxlive ≤ R
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Register allocation in two phases

Using Maxlive, it seems possible to use a very simple register allocation
scheme:

1 spill variables until Maxlive ≤ R

2 transform program into strict SSA form

3 allocate variables using R registers

4 go out of colored SSA form

Questions

SSA seems to transform an NP-complete problem into polynomial one. . .
Where is the complexity now? What else is simplified?
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What is coalescing?

Goal of coalescing

Removing the register-to-register copies [move a← b]

Numerous move due to:

� live-range splitting to
avoid spilling

� register constraints

� SSA destruction
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� live-range splitting to
avoid spilling

� register constraints

� SSA destruction
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c← f(a, b)

a← . . .
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Goal of coalescing

Removing the register-to-register copies [move a← b]

Numerous move due to:

� live-range splitting to
avoid spilling

� register constraints

� SSA destruction

if (. . . )

a1 ← 1 a2 ← 2

a3 ← φ(a1, a2)
· · · ← a3

move a3 ← a1 move a3 ← a2
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Traditional modeling of the coalescing problem

Given an instruction [move a← b]

Fact I Giving the same color to both a and b saves the instruction.

Fact II Merging nodes a and b forces them to have the same color.

Idea Express this as an “affinity” between a and b in the
interference graph to drive the algorithm.

a

b c

d

Merge a and b
ab

c

d

We work on graphs instead of programs.

Demo: split graph in ubigraph
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Different coalescing problems

Aggressive

Incremental

Conservative

Optimistic
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Different coalescing problems

Aggressive

Coalesce as many affinities
as possible.
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The problem of incremental coalescing

The goal of incremental is to perform conservative coalescing by
coalescing affinities one by one.

Problem (Incremental coalescing)

Given a k-colorable graph G and two nodes x and y , is it possible to color
G such that x and y have the same color?

Theorem

The incremental coalescing problem is NP-complete.
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Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

First, equivalence between graph-3-coloring and 4-SAT.

� 3 nodes for True, False, and X

� 2 nodes for each variable: v and v̄

� . . . and a widget to forbid every
variable of a clause to be false

X

T F
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ȳ
zz̄

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).
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Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

Now, transform 3-SAT instance into 4-SAT by adding x0 to every clause:

(y ∨ z̄ ∨ w) ∧ · · · ∧ (z ∨ ȳ ∨ u)

becomes

(x0 ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x0 ∨ z ∨ ȳ ∨ u)

Clearly, x0 =True satisfies the equation (i.e., the graph is 3-colorable).
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Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

Now, transform 3-SAT instance into 4-SAT by adding x0 to every clause:

(y ∨ z̄ ∨ w) ∧ · · · ∧ (z ∨ ȳ ∨ u)

becomes

(x0 ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x0 ∨ z ∨ ȳ ∨ u)

Clearly, x0 =True satisfies the equation (i.e., the graph is 3-colorable).

Now, ask x0 and False to be coalesced. . .
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Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

To conclude:

3-SAT is true ⇐⇒ 4-SAT is true with x0 = False

⇐⇒ graph is 3-colorable with x0 in red/False

⇐⇒ incremental coalescing of x0 with False is possible
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Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.
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Algorithms do incremental conservative coalescing.
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A gap
Incremental conservative is not optimal.

Greedy-k-colorable test might be stuck. Multiple node merging necessary
to stay Greedy-k-colorable.
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A gap
Incremental conservative is not optimal.

Greedy-k-colorable test might be stucked. Multiple node merging
necessary to stay Greedy-k-colorable.

a

b

c

e

dfg

h

i

m

jklkl

j

ZO ZO GA

40 / 54



Aggressive + decoalescing

Aggressive + de-coalescing scheme: start from a completely aggressively
coalesced graph, give up with some move until it gets Greedy-k-colorable
again.
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Back to our colored graph
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Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours
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Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Chordal

Relies on optimal incremental coalescing for
interval graphs. (May need to merge other nodes

to get a greedy-k-colorable graph.)
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Coalescing two nodes

a bc deg fij
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Coalescing two nodes. . . with additional merges

a bc deg fij

c b

e
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adfj
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Incremental coalescing for chordal graphs

Problem (Incremental coalescing for chordal graphs)

Given a k-colorable chordal graph G and two nodes x and y . Is it possible
to color G such that x and y have the same color?

This problem is polynomial!

Moreover, if the answer is yes, it is possible to modify G so that x and y are

merged and G stays chordal.

The same question with greedy-k-colorable graphs is still open.
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Example on a chordal graph

Let us consider a 3-colorable chordal graph.

Demo: chordal graph in ubigraph
ZO MEU BU
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Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.
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Finding a path on the subtrees

z

y

x

r

There exists a 3-coloring in which r and y have the same color.
Idem for r and z .

But there is no coloring in which r and x have the same color.
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Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA
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A simple algorithmic strategy for chordal incremental
coalescing

Building the representation of a chordal graph as subtrees of a tree is
painful.

We have devised an algorithmic strategy that works directly on the graph,
using the same ideas as in Chaitin et al.’s greedy coloring algorithm.

MEU GA BU
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Demonstration of coalescing
Demonstration of conservative coalescing on graph #311 of the
“Coalescing Challenge.” (Appel&George)

Demo: conservative coalescing

MEU GA ZO
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Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)

à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)

à aggressive coalescing + de-coalescing

both NP-complete

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorable

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

aggressive

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

aggressivede-coalescing

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

aggressivede-coalescing

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

aggressivede-coalescing

MEU GA MEU

51 / 54



To summarize. . .

SSA Form is a powerfull property for compilers.

Register allocation under SSA can be separated into two clean phases:

1 spilling

2 coloring/coalescing

Bonus: what will be written left to the pumping shadoks in next slide?

MEU BU GA
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That’s all for today

Answer: MEU BU BU
MEU BU BU
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Control-flow graph (CFG)

Basic blocks sequence of consecutive statements
Edges control flow (jumps or fall-through)

r

(a, b)← . . .

if b < a

c← a− b
if c > 10

c← 0

c← c mod 10

return c

·(a, b)← . . .
·if b < a then
· c ← a− b
· if c > 10 then
· c ← c mod 10
· endif
·else
· c ← 0
·endif
·return c

Back

MEU BU BU

53 / 54



Tree-shape. Dominance

Dominance relation

� a single entry node r .

� each node reachable from r .

� a dominates b if every path
from r to b contains a.

Properties

� The dominance relation
induces a tree.

1 dominates 4? YES

r=0

1 9

2

5

6

7

8

3

4

1

4
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Static Single Assignment with dominance property

Strict code

Every path from r to a use traverses a
definition

Strict SSA
� SSA: only one definition textually per

variable

� Strict: the definition dominates all uses

r=0

1 9

2

5

6

7

8

3

4

x =

= x

= x

1
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Liveness: sub-tree of a tree

The live-range of an SSA variable is

the set of program points
between the definition and a use
(without going through the definition again)

� the definition dominates the entire
live-range

� the live-range is a sub-tree of the
dominance-tree

r=0

1

2

3

4

5

6

7

8

9x =

= x
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Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck
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bc

d e f

g

i
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c ′

d ′

g ′
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2
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2

332

44
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Hi-degree node
Low-degree node

Back
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