

Featuring Florent Bouchez Tichadou

florent.bouchez-tichadou@imag.fr

EJCP Rennes, June 20th, 2014

What's in a name?

Cytron & Ferrante, 1987

What's in a name?

Or, for par

the value of renaming for parallelism detection and storage allocation

Cytron & Ferrante, 1987

What's in a compiler?

What's in a compiler?

What's in a compiler?

Goals for this lecture

- Understand the importance of "names"
- Introduce an interesting optimization problem IP register allocation

SSA Form

2 Register allocation

Static Single Assignment (SSA)

¿SSA?

- Assignment: variable's definition (e.g., x in ''x=y+1'')
- Single: only one definition per variable
- Static: in the program text

Referential transparency

Example $(y \text{ and } z \text{ are not equal})$		
opaque (context dependent)	referentially transparent SSA form	
x = 1;	$x_1 = 1;$	
y = x + 1;	$y = x_1 + 1;$	
x = 2;	$x_2 = 2;$	
z = x + 1;	$z = x_2 + 1;$	

Referential transparency

Example $(y \text{ and } z \text{ are not equal})$		
opaque (context dependent)	referentially transparent SSA form	
x = 1;	$x_1 = 1;$	
y = x + 1;	$y = x_1 + 1;$	
x = 2;	$x_2 = 2;$	
z = x + 1;	$z = x_2 + 1;$	

Referential transparency

- value of variable independent of its position
- may refine our knowledge (e.g., '`if (x==0)'') but underlying value of x does not change

Each variable v is:

- used only once as $v = \ldots$
- can be many times as ... = v

(target/definition/left-hand-side) (source/use/right-hand side)

Each variable v is:

- used only once as v = ...
- can be many times as ... = v

(target/definition/left-hand-side) (source/use/right-hand side)

Each variable v is:

- used only once as v = ...
- can be many times as ... = v

$$\begin{aligned} & x = \text{input}(); \\ & \text{if } (x == 42) \{ \\ & y_1 = 1; \\ \} \text{ else } \{ \\ & y_2 = x + 2; \\ \} \\ & y_3 = \phi(y_1, y_2); \\ & \text{print}(y_3); \end{aligned}$$

Introduction of ϕ -functions:

- to fix the ambiguity; introduces
 y₃ which takes either y₁ or y₂
- placed at control-flow merge points i.e., head of basic-blocks that have multiple predecessors
- n parameters if it has n incoming CFG paths
- represented as $a_0 = \phi(a_1, \ldots, a_n)$

Questions on SSA

 \approx 5 min to answer the following questions:

Is it possible to have more than one ϕ -function in a basic block?

How can you execute code containing ϕ -functions on a machine?

- multiple φ-functions executed simultaneously:
 a = φ(a, b)
 b = φ(b, a)
- ϕ -functions not directly executable (IR only: for static analysis)
- $\phi\text{-functions}$ removed before assembly code generation $\ensuremath{\mathbb{I}}\xspace^{2}$ copy instructions insertion

- multiple φ-functions executed simultaneously:
 a = φ(a, b)
 b = φ(b, a)
- ϕ -functions not directly executable (IR only: for static analysis)
- $\phi\text{-functions}$ removed before assembly code generation $\ensuremath{\mathbb{I}}\xspace^{2}$ copy instructions insertion

- SSA is not Dynamic Single Assignment (DSA or SA)
- Construction: insert φ-function where multiple reaching defs converge; version variables x and y (integer subscripts);

- During actual program execution, information flows between variables
- Static analysis captures this behavior by propagating abstract information along CFG
- Can be propagated more efficiently using a functional or sparse representation such as SSA
- Constant propagation: definitions \equiv set of points where information may change; associate information with variable names rather than variables \times program points

MELL BI

Null pointer analysis

Determine statically if variable can contain null value at run-time.

Null pointer analysis

Null pointer analysis

• Propagates from defs to uses (via def-use links); avoid program points where information does not change or not relevant

14 / 54

MEU ZO

Results are more compact

French folklore: Les Shadoks

BU GA BU

BU GA BU

BU GA BU

BU GA BU

BU GA ZO 🗳

18/5

18 / 54

What is register allocation?

What is register allocation?

Assign variables to memory locations

- Rules of the game
 - two interfering variables
 im different registers
 - not enough registers
 spill to memory

Plus constraints:

- register constraints
- pre-colored variables
- register pairing, aliasing,...

Chaitin et al. model

BU BU GA

20 / 54

Chaitin et al. model

Chaitin et al. model

Coloring a basic block

- MAXLIVE $\leq r$
- Linear scan

Coloring a basic block

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

C

d

- MAXLIVE $\leq r$
- Linear scan

d

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

- MAXLIVE $\leq r$
- Linear scan

"Spilling easier on a BB than on a general CFG"

Register allocation is modeled as coloring the interference graph of the program.

Problem

Graph-*k*-coloring is *NP*-complete (for $k \ge 3$), and any interference graph can arise in programs. (*Chaitin et al.'s proof*) register allocation is NP-complete in this model.

Register allocation is modeled as coloring the interference graph of the program.

Problem

Graph-*k*-coloring is *NP*-complete (for $k \ge 3$), and any interference graph can arise in programs. (*Chaitin et al.'s proof*) register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.'s greedy scheme.

Greedy scheme

If coloring fails, usually spill.

Register allocation is modeled as coloring the interference graph of the program.

Problem

Graph-*k*-coloring is *NP*-complete (for $k \ge 3$), and any interference graph can arise in programs. (*Chaitin et al.'s proof*) register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.'s greedy scheme.

Greedy scheme

If coloring fails, usually spill. Disadvantages:

- The scheme might fail even when there is a solution.
- A variable is supposed to be in exactly one register.

Register allocation is modeled as coloring the interference graph of the program.

Problem

Graph-*k*-coloring is *NP*-complete (for $k \ge 3$), and any interference graph can arise in programs. (*Chaitin et al.'s proof*) register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.'s greedy scheme.

Greedy scheme

23/

BU BU MEL

If coloring fails, usually spill.

Disadvantages:

- The scheme might fail even when there is a solution.
 meed to spill more than necessary
- A variable is supposed to be in exactly one register.
 metric restriction on the coloring

Coloring, spilling are inter-dependent

Coloring

Spilling

Coloring, spilling are inter-dependent

Coloring, spilling are inter-dependent

- coloring fails
- less nodes to color change in code (load/store)

Coloring, spilling and coalescing are inter-dependent

- coloring fails
- less nodes to color change in code (load/store)
- decrease degree of neighbors

Coloring, spilling and coalescing are inter-dependent

- coloring fails
- less nodes to color change in code (load/store)
- decrease degree of neighbors
- coalescing = giving same color to two nodes

Coloring, spilling and coalescing are inter-dependent

- coloring fails
 - less nodes to color change in code (load/store)
- decrease degree of neighbors
- coalescing = giving same color to two nodes
- spilling a coalesced node is more expensive

BU ZO GA

24/

Graph coloring allocators in one phase

- Chaitin-Briggs allocator (Briggs, Cooper, Torczon)
- Iterated Register Coalescing (Appel, George)

Drawbacks of register allocation in one phase

- code more complicated to maintain
- improvements must take the whole allocator into account
- harder to "prioritize" a problem

Separating register allocation in two phases

Allows to optimize problems separately:

- priority is given to spilling
- then, coloring/coalescing (without "useless spills")

How to separate register allocation in two phases? Here comes the SSA form...

Theorem

The interference graph of a program under strict SSA form is chordal.

Separating register allocation in two phases

Allows to optimize problems separately:

- priority is given to spilling
- then, coloring/coalescing (without "useless spills")

How to separate register allocation in two phases? Here comes the SSA form...

Theorem

The interference graph of a program under strict SSA form is chordal.

Definition (Chordal graph)

Definition (Chordal graph)

A graph is chordal iff every cycle of size \geq 4 has a chord.

Chordal graphs are *perfect* and *easy to color*.

Static Single Assignment

SSA : exactly one *textual* definition per variable

Static Single Assignment

SSA : exactly one textual definition per variable

Static Single Assignment

SSA : exactly one textual definition per variable

Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses

Theorem

The interference graph of a program under strict SSA form is chordal.

Theorem

The interference graph of a program under strict SSA form is chordal.

Theorem

The interference graph of a program under strict SSA form is chordal.

Theorem

The interference graph of a program under strict SSA form is chordal.

BU MEU BI

Theorem

The interference graph of a program under strict SSA form is chordal.

29 /

BU MEU B

Theorem

The interference graph of a program under strict SSA form is chordal.

29/

30 / 54

• MAXLIVE $\leq r$

Tree scan

BB

e := mem[j+8] n := mem[j+16]

Tree scan

BB

e := mem[j+8] n := mem[j+16]

BU MEU ZO

30 / 54

Static single assignment form

Tree scan

BB

BU MEU ZO

30 / 54

- MAXLIVE $\leq r$
- Tree scan

BB

• Tree scan

BB

30 / 54

• Tree scan

BB

• Tree scan

BB

• Tree scan

BB

• Tree scan

BB

30 / 54

- MAXLIVE $\leq r$
- Tree scan

BB

• Tree scan

BB

• Tree scan

BB

• Tree scan

BB

• Tree scan

BB

Strict SSA programs are easy to color

Chordal graphs are *perfect graphs*, hence easy to color. We proved more:

Theorem

Chordal graphs are colorable using Chaitin et al. greedy scheme. They are greedy-k-colorable.

General program: NP-complete

strict SSA program: greedy-k-colorable

Strict SSA programs are easy to color

Chordal graphs are *perfect graphs*, hence easy to color. We proved more:

Theorem

Chordal graphs are colorable using Chaitin et al. greedy scheme. They are greedy-k-colorable.

General program: NP-complete

strict SSA program: greedy-*k*-colorable

Under strict SSA, Maxlive, the maximum number of simultaneously live variables, is the coloring indicator:

 $\mathsf{Maxlive} \leq R$

Register allocation in two phases

Using Maxlive, it seems possible to use a very simple register allocation scheme:

- spill variables until Maxlive $\leq R$
- Itransform program into strict SSA form
- \bigcirc allocate variables using R registers
- go out of colored SSA form

Register allocation in two phases

Using Maxlive, it seems possible to use a very simple register allocation scheme:

- spill variables until Maxlive $\leq R$
- Itransform program into strict SSA form
- \bigcirc allocate variables using R registers
- go out of colored SSA form

Questions

SSA seems to transform an NP-complete problem into polynomial one... Where is the complexity now? What else is simplified?

Goal of coalescing

Removing the register-to-register copies [move $a \leftarrow b$]

Numerous move due to:

• live-range splitting to avoid spilling

Goal of coalescing

Removing the register-to-register copies [move $a \leftarrow b$]

Numerous move due to:

- live-range splitting to avoid spilling
- register constraints

$$\begin{array}{c}
a \leftarrow \dots \\
b \leftarrow \dots \\
b \leftarrow \dots \\
b \leftarrow c, a \\
move R_{0}, a \\
move R_{1}, b \\
call f \\
move c, R_{0}
\end{array}$$

ZO GA BU

33 / 54

Goal of coalescing

Removing the register-to-register copies [move $a \leftarrow b$]

Numerous move due to:

- live-range splitting to avoid spilling
- register constraints
- SSA destruction

Goal of coalescing

Removing the register-to-register copies [move $a \leftarrow b$]

Numerous move due to:

- live-range splitting to avoid spilling
- register constraints
- SSA destruction

Given an instruction [move $a \leftarrow b$]

Fact I Giving the same color to both a and b saves the instruction. Fact II Merging nodes a and b forces them to have the same color.

Given an instruction [move $a \leftarrow b$]

Fact I Giving the same color to both a and b saves the instruction. Fact II Merging nodes a and b forces them to have the same color.

Given an instruction [move $a \leftarrow b$]

Fact I Giving the same color to both *a* and *b* saves the instruction.

Fact II Merging nodes *a* and *b* forces them to have the same color.

 Idea Express this as an "affinity" between a and b in the interference graph to drive the algorithm.

Given an instruction [move $a \leftarrow b$]

Fact I Giving the same color to both a and b saves the instruction.

Fact II Merging nodes *a* and *b* forces them to have the same color.

 Idea Express this as an "affinity" between a and b in the interference graph to drive the algorithm.

We work on graphs instead of programs.

Demo: split graph in ubigraph

Different coalescing problems

Aggressive

Conservative

Incremental

Optimistic

Different coalescing problems

Aggressive

Conservative

Coalesce as many affinities as possible.

Incremental

Optimistic

multiway-cut

Incremental

Optimistic

multiway-cut

Conservative

Coalesce as many affinities as possible but remains *k*-colorable.

Incremental

Optimistic

Incremental

Optimistic

Incremental

Optimistic

Perform aggressive coalescing, then de-coalescing to get *k*-colorable.

3-SAT

3-SAT

NP-complete for general graphs. Polynomial for chordal graphs.

The problem of incremental coalescing

The goal of incremental is to perform conservative coalescing by coalescing affinities one by one.

Problem (Incremental coalescing)

Given a k-colorable graph G and two nodes x and y, is it possible to color G such that x and y have the same color?

Theorem

The incremental coalescing problem is NP-complete.

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

First, equivalence between graph-3-coloring and 4-SAT.

zo ви ви 式 🗗

37 / 5

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

First, equivalence between graph-3-coloring and 4-SAT.

- 3 nodes for True, False, and X
- 2 nodes for each variable: v and \bar{v}

ZO BU BI

37 / 5

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

- 3 nodes for True, False, and X
- 2 nodes for each variable: v and \bar{v}

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

- 3 nodes for True, False, and X
- 2 nodes for each variable: v and \bar{v}

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

- 3 nodes for True, False, and X
- 2 nodes for each variable: v and \bar{v}

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

- 3 nodes for True, False, and X
- 2 nodes for each variable: v and \bar{v}

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

- 3 nodes for True, False, and X
- 2 nodes for each variable: v and \bar{v}
- ... and a widget to forbid every variable of a clause to be false

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

37 / 54

ZO BU B

Need a widget that is 3-colorable only if not all 4 variables are false.

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

If all 4 variables are false, not 3-colorable.

ZO BU BU

37 / 54

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

If at least one variable is true, 3-colorable.

ZO BU BU

37 / 54

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

Now, transform 3-SAT instance into 4-SAT by adding x_0 to every clause:

$$(y \lor \overline{z} \lor w) \land \cdots \land (z \lor \overline{y} \lor u)$$

becomes

$$(x_0 \lor y \lor \overline{z} \lor w) \land \cdots \land (x_0 \lor z \lor \overline{y} \lor u)$$

37 / 54

ZO BU BL

Clearly, $x_0 =$ True satisfies the equation (i.e., the graph is 3-colorable).

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$.

Now, transform 3-SAT instance into 4-SAT by adding x_0 to every clause:

$$(y \lor \overline{z} \lor w) \land \cdots \land (z \lor \overline{y} \lor u)$$

becomes

$$(x_0 \lor y \lor \overline{z} \lor w) \land \cdots \land (x_0 \lor z \lor \overline{y} \lor u)$$

37 / 54

ZO BU BI

Clearly, $x_0 =$ True satisfies the equation (i.e., the graph is 3-colorable).

Now, ask x_0 and False to be coalesced...

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on $(x \lor y \lor \overline{z} \lor w) \land \cdots \land (\overline{x} \lor z \lor \overline{y} \lor u)$. To conclude:

- 3-SAT is true \iff 4-SAT is true with $x_0 = False$
 - \iff graph is 3-colorable with x_0 in red/False
 - \iff incremental coalescing of x_0 with False is possible

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Not greedy-3-colorable

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Not greedy-3-colorable

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

greedy-3-colorable

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

greedy-3-colorable

Incremental conservative is not optimal.

Aggressive + decoalescing

Aggressive + de-coalescing scheme: start from a completely aggressively coalesced graph, give up with some move until it gets Greedy-k-colorable again.

Aggressive + decoalescing

Aggressive + de-coalescing scheme: start from a completely aggressively coalesced graph, give up with some move until it gets Greedy-k-colorable again.

Back to our colored graph

• Briggs

Briggs

Briggs

• George

George

Briggs

• George

George

Briggs

• George

George

Briggs

• George

George

Briggs

• George

George

All high-degree neighbours are neighbours of the other node

ZO ZO MEU

Briggs

• George

George

- Briggs
- George
- Brute-force

Brute-force

- Briggs
- George
- Brute-force

Brute-force

- Briggs
- George
- Brute-force

Brute-force

Merge the nodes and check if resulting graph is greedy-*k*-colorable

- Briggs
- George
- Brute-force

Brute-force

Merge the nodes and check if resulting graph is greedy-*k*-colorable

- Briggs
- George
- Brute-force
- Chordal

Chordal

Relies on optimal incremental coalescing for interval graphs. (May need to merge other nodes to get a greedy-k-colorable graph.)

- Briggs
- George
- Brute-force
- Chordal

Chordal

Relies on optimal incremental coalescing for interval graphs. (May need to merge other nodes to get a greedy-k-colorable graph.)

ZO ZO MEU

ZO ZO MEU

Coalescing two nodes... with additional merges

ZO ZO MEU

Incremental coalescing for chordal graphs

Problem (Incremental coalescing for chordal graphs)

Given a k-colorable chordal graph G and two nodes x and y. Is it possible to color G such that x and y have the same color?

This problem is polynomial!

Moreover, if the answer is yes, it is possible to modify G so that x and y are merged and G stays chordal.

The same question with greedy-k-colorable graphs is still open.

Example on a chordal graph

Let us consider a 3-colorable chordal graph.

Demo: chordal graph in ubigraph

What happens at one point on the path, color-wise?

Except for the "live-through" variables, the two parts of the tree are independent.

Finding a path on the subtrees

Finding a path on the subtrees

There exists a 3-coloring in which r and y have the same color. Idem for r and z.

But there is no coloring in which r and x have the same color.

A simple algorithmic strategy for chordal incremental coalescing

Building the representation of a chordal graph as subtrees of a tree is painful.

We have devised an algorithmic strategy that works directly on the graph, using the same ideas as in Chaitin et al.'s greedy coloring algorithm.

Demonstration of coalescing

Demonstration of conservative coalescing on graph #311 of the "Coalescing Challenge." (Appel&George)

50 /

- Conservative rules (e.g., Briggs & George)
- Optimistic coalescing (e.g., Park & Moon)

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

- Conservative rules (e.g., Briggs & George)
 incremental coalescing
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

Theoretical limits of coalescing schemes

- Conservative rules (e.g., Briggs & George)
 incremental coalescing NP-complete (not greedy-check)
- Optimistic coalescing (e.g., Park & Moon)
 aggressive coalescing + de-coalescing

both NP-complete

To summarize...

SSA Form is a powerfull property for compilers.

Register allocation under SSA can be separated into two clean phases:

- spilling
- 2 coloring/coalescing

Bonus: what will be written left to the pumping shadoks in next slide?

That's all for today

Answer: MEU BU BU

Control-flow graph (CFG)

Basic blocks sequence of consecutive statements *Edges* control flow (jumps or fall-through)

 $(a, b) \leftarrow \dots$ if b < a then $c \leftarrow a - b$ if c > 10 then $c \leftarrow c \mod 10$ endif else $c \leftarrow 0$ endif return c

Tree-shape. Dominance

Dominance relation

- a single entry node r.
- each node reachable from r.
- *a* dominates *b* if every path from *r* to *b* contains *a*.

Tree-shape. Dominance

Dominance relation

- a single entry node r.
- each node reachable from r.
- *a* dominates *b* if every path from *r* to *b* contains *a*.

Tree-shape. Dominance

Dominance relation

- a single entry node r.
- each node reachable from r.
- *a* dominates *b* if every path from *r* to *b* contains *a*.

Properties

• The dominance relation induces a tree.

Static Single Assignment with dominance property

Strict code

Every path from r to a *use* traverses a definition

Strict SSA

- SSA: only *one* definition *textually* per variable
- Strict: the definition dominates all uses

Liveness: sub-tree of a tree

The live-range of an SSA variable is the set of program points between the definition and a use (without going through the definition again)

Liveness: sub-tree of a tree

The live-range of an SSA variable is the set of program points between the definition and a use (without going through the definition again)

- the definition dominates the entire live-range
- the live-range is a sub-tree of the dominance-tree

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

MEU BU ZO

54 / 54

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

меџ вџ до

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

54 / 54

MEU BU ZO

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

MEU BU ZO

k-colorability is hard to check, but greedy-k-colorability is easy.

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

MEU BU ZO

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

54 / 54

MEU BU ZO

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

меи ви zo
Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

54 / 54

MEU BU ZO