
Featuring

Florent Bouchez
Tichadou

florent.bouchez-tichadou@imag.fr

EJCP Rennes, June 20th, 2014

florent.bouchez-tichadou@imag.fr


What’s in a name?

Or,
the value of renaming for parallelism detection and

storage allocation

Cytron & Ferrante, 1987

ZO

2 / 54



What’s in a name?
Or,

the value of renaming for parallelism detection and
storage allocation

Cytron & Ferrante, 1987

ZO

2 / 54



What’s in a compiler?

foo.c foo.bin

Goals for this lecture
� Understand the importance of “names” RSSA Form

� Introduce an interesting optimization problem Rregister allocation

MEU

3 / 54



What’s in a compiler?

Good stuff Bad stuff

Goals for this lecture
� Understand the importance of “names” RSSA Form

� Introduce an interesting optimization problem Rregister allocation

MEU

3 / 54



What’s in a compiler?

Good stuff Bad stuff

Goals for this lecture
� Understand the importance of “names” RSSA Form

� Introduce an interesting optimization problem Rregister allocation

MEU

3 / 54



Outline

1 SSA Form

2 Register allocation

BU GA

4 / 54



Outline

1 SSA Form

2 Register allocation

BU BU

5 / 54



Static Single Assignment (SSA)

¿SSA?

� Assignment: variable’s definition (e.g., x in ‘‘x=y+1’’)

� Single: only one definition per variable

� Static: in the program text

BU ZO

6 / 54



Referential transparency

Example (y and z are not equal)

opaque (context dependent) referentially transparent
SSA form

x = 1;
y = x + 1;
x = 2;
z = x + 1;

x1 = 1;
y = x1 + 1;
x2 = 2;
z = x2 + 1;

Referential transparency

� value of variable independent of its position

� may refine our knowledge (e.g., ‘‘if (x==0)’’) but underlying
value of x does not change

BU MEU

7 / 54



Referential transparency

Example (y and z are not equal)

opaque (context dependent) referentially transparent
SSA form

x = 1;
y = x + 1;
x = 2;
z = x + 1;

x1 = 1;
y = x1 + 1;
x2 = 2;
z = x2 + 1;

Referential transparency

� value of variable independent of its position

� may refine our knowledge (e.g., ‘‘if (x==0)’’) but underlying
value of x does not change

BU MEU

7 / 54



Informal Semantics

Each variable v is:
� used only once as v = ... (target/definition/left-hand-side)
� can be many times as ... = v (source/use/right-hand side)

ZO GA

8 / 54



Informal Semantics

Each variable v is:
� used only once as v = ... (target/definition/left-hand-side)
� can be many times as ... = v (source/use/right-hand side)

x = input();
if (x == 42) {
y = 1;
} else {
y = x + 2;
}

print(y);

x ← input()
(x = 42)?

y ← 1

A

y ← x +2

B

print(y ) CFG

ZO GA

8 / 54



Informal Semantics

Each variable v is:
� used only once as v = ... (target/definition/left-hand-side)
� can be many times as ... = v (source/use/right-hand side)

x = input();
if (x == 42) {
y1 = 1;
} else {
y2 = x + 2;
}
y3 = φ(y1,y2);
print(y3);

x ← input()
(x = 42)?

y1← 1

A

y2← x +2

B

y3←φ(A : y1, B : y2)
print(y3)

ZO GA

8 / 54



Informal Semantics

x ← input()
(x = 42)?

y1← 1

A

y2← x +2

B

y3←φ(A : y1, B : y2)
print(y3)

Introduction of φ-functions:

� to fix the ambiguity; introduces
y3 which takes either y1 or y2

� placed at control-flow merge
points i.e., head of basic-blocks
that have multiple predecessors

� n parameters if it has n incoming CFG paths

� represented as a0 = φ(a1, . . . , an)

ZO BU

9 / 54



Questions on SSA

≈ 5 min to answer the following questions:

Is it possible to have more than one φ-function in a basic block?

How can you execute code containing φ-functions on a machine?

ZO ZO

10 / 54



Informal Semantics

� multiple φ-functions executed simultaneously:
a = φ(a, b)
b = φ(b, a)

� φ-functions not directly executable (IR only: for static analysis)

� φ-functions removed before assembly code generation
Rcopy instructions insertion

ZO MEU

11 / 54



Informal Semantics

� multiple φ-functions executed simultaneously:
a = φ(a, b)
b = φ(b, a)

� φ-functions not directly executable (IR only: for static analysis)

� φ-functions removed before assembly code generation
Rcopy instructions insertion

ZO MEU

11 / 54



Informal Semantic

� SSA is not Dynamic Single Assignment (DSA or SA)

� Construction: insert φ-function where multiple reaching defs
converge; version variables x and y (integer subscripts);

x = 0;
y = 0;
while (x<10) {
y = y + x ;
x = x + 1;
}
print (y);

x1 ← 0
y1 ← 0

x2←φ(x1,x3)
y2←φ(y1, y3)
(x2 < 10)?

y3← y2+x2

x3← x2+1

print(y2)

MEU GA

12 / 54



Comparison with Classical Data Flow Analysis

� During actual program execution, information flows between variables

� Static analysis captures this behavior by propagating abstract
information along CFG

� Can be propagated more efficiently using a functional or sparse
representation such as SSA

� Constant propagation: definitions ≡ set of points where information
may change; associate information with variable names rather than
variables × program points

MEU BU

13 / 54



Comparison with Classical Data Flow Analysis

Null pointer analysis

Determine statically if variable can contain null value at run-time.

� Propagates from defs to uses (via def-use links); avoid program points
where information does not change or not relevant

� Results are more compact

MEU ZO

14 / 54



Comparison with Classical Data Flow Analysis

Null pointer analysis

(current bounding box.south west) rectangle (current bounding box.north east);

y = 0; x = 0

y = y +1

x = 1

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0,>]

[x , y ] = [0, �C0]
[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [�C0, 0]

[x , y ] = [>,>]

(current bounding box.south west) rectangle (current bounding box.north east);

y1 = 0, x1 = 0

y2 =φ(y3, y1)
y3 = y2+1

x2 = 1

y4 =φ(y3, y1, y1)
x3 =φ(x1,x1,x2)

[x1, y1] = [0, 0]

[y2, y3] = [>, �C0]

[x2] = [�C0]

[y4,x3] = [>,>]

dense SSA based

� Propagates from defs to uses (via def-use links); avoid program points
where information does not change or not relevant

� Results are more compact

MEU ZO

14 / 54



Comparison with Classical Data Flow Analysis

Null pointer analysis

(current bounding box.south west) rectangle (current bounding box.north east);

y = 0; x = 0

y = y +1

x = 1

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0,>]

[x , y ] = [0, �C0]
[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [0, 0]

[x , y ] = [�C0, 0]

[x , y ] = [>,>]

(current bounding box.south west) rectangle (current bounding box.north east);

y1 = 0, x1 = 0

y2 =φ(y3, y1)
y3 = y2+1

x2 = 1

y4 =φ(y3, y1, y1)
x3 =φ(x1,x1,x2)

[x1, y1] = [0, 0]

[y2, y3] = [>, �C0]

[x2] = [�C0]

[y4,x3] = [>,>]

dense SSA based

� Propagates from defs to uses (via def-use links); avoid program points
where information does not change or not relevant

� Results are more compact

MEU ZO

14 / 54



Outline

1 SSA Form

2 Register allocation

MEU MEU

15 / 54



French folklore: Les Shadoks

BU GA GA

16 / 54



Shadoks have a very small brain

BU GA BU

17 / 54



Shadoks have a very small brain

BU GA BU

17 / 54



Shadoks have a very small brain

BU GA BU

17 / 54



Shadoks have a very small brain

BU GA BU

17 / 54



Shadoks have a very small brain

BU GA BU

17 / 54



Shadoks have a very small brain

BU GA BU

17 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



The shadoks at the library

BU GA ZO

18 / 54



What is register allocation?

Assign variables to memory
locations

� Registers: , , , . . .

� Memory: infinite

Rules of the game

� two interfering variables
à different registers

� not enough registers
à spill to memory

a← 3425
n← 0

a 6= 1 ?

n← n + 1
a even ?

a← a/2 a← 3× a + 1

print n

BU GA MEU

19 / 54



What is register allocation?

Assign variables to memory
locations

� Registers: , , , . . .

� Memory: infinite

Rules of the game

� two interfering variables
à different registers

� not enough registers
à spill to memory

Plus constraints:

� register constraints

� pre-colored variables

� register pairing,
aliasing,. . .

BU GA MEU

19 / 54



Chaitin et al. model

Live-in: k j

g := mem[j+12]

h := k-1

f := g+h

e := mem[j+8]

m := mem[j+16]

b := mem[f]

c := e+8

d := c

k := m+4

j := b

Live-out: d k j

Live-ranges
g

h

f

e

m

b

c

d

g

h

f

e

m

b

c

d

k
j

jk

BU BU GA

20 / 54



Chaitin et al. model

Interference graph

k

j

g

h

f

e

m
b c

d

Live-ranges
g

h

f

e

m

b

c

d

g

h

f

e

m

b

c

d

k
j

jk

BU BU GA

20 / 54



Chaitin et al. model

Interference graph

k

j

g

h

f

e

m
b c

d

Live-ranges
g

h

f

e

m

b

c

d

g

h

f

e

m

b

c

d

k
j

jk

BU BU GA

20 / 54



Coloring a basic block

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

k’
j’

e

m

b

c

d

h

f

kj

g

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

k’
j’

e

m

b

c

d

h

f

j

g

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

k’
j’

e

m

b

c

d

h

f

g

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

k’
j’

e

m

b

c

d

h

f

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

k’
j’

e

m

b

c

d

f

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

k’
j’

e

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

k’
j’

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

j’

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

j’

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



Coloring a basic block

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

� MAXLIVE ≤ r

� Linear scan

BU BU BU

21 / 54



“Spilling easier on a BB than on a general CFG”

Basic Block

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

General control flow graph

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

Interference graph

k

j

g

h

f

e

m

c

d

b

� Coloring test

� Greedy coloring

Demo: greedy coloring in ubigraph

BU BU ZO

22 / 54



Coloring the interference graph: the greedy way

Register allocation is modeled as coloring the interference graph of the
program.

Problem

Graph-k-coloring is NP-complete (for k ≥ 3), and any interference graph
can arise in programs. (Chaitin et al.’s proof)

à register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.’s greedy scheme.
Greedy scheme

If coloring fails, usually spill.
Disadvantages:

� The scheme might fail even when there is a solution.

à need to spill more than necessary

� A variable is supposed to be in exactly one register.

à restriction on the coloring

BU BU MEU

23 / 54



Coloring the interference graph: the greedy way

Register allocation is modeled as coloring the interference graph of the
program.

Problem

Graph-k-coloring is NP-complete (for k ≥ 3), and any interference graph
can arise in programs. (Chaitin et al.’s proof)

à register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.’s greedy scheme.
Greedy scheme

If coloring fails, usually spill.

Disadvantages:

� The scheme might fail even when there is a solution.

à need to spill more than necessary

� A variable is supposed to be in exactly one register.

à restriction on the coloring

BU BU MEU

23 / 54



Coloring the interference graph: the greedy way

Register allocation is modeled as coloring the interference graph of the
program.

Problem

Graph-k-coloring is NP-complete (for k ≥ 3), and any interference graph
can arise in programs. (Chaitin et al.’s proof)

à register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.’s greedy scheme.
Greedy scheme

If coloring fails, usually spill.
Disadvantages:

� The scheme might fail even when there is a solution.

à need to spill more than necessary

� A variable is supposed to be in exactly one register.

à restriction on the coloring

BU BU MEU

23 / 54



Coloring the interference graph: the greedy way

Register allocation is modeled as coloring the interference graph of the
program.

Problem

Graph-k-coloring is NP-complete (for k ≥ 3), and any interference graph
can arise in programs. (Chaitin et al.’s proof)

à register allocation is NP-complete in this model.

A greedy coloring heuristic is used: Chaitin et al.’s greedy scheme.
Greedy scheme

If coloring fails, usually spill.
Disadvantages:

� The scheme might fail even when there is a solution.
à need to spill more than necessary

� A variable is supposed to be in exactly one register.
à restriction on the coloring

BU BU MEU

23 / 54



Coloring, spilling are inter-dependent

Coloring Spilling

1 coloring fails

2 less nodes to color
change in code
(load/store)

3 decrease degree of
neighbors

4 coalescing = giving same
color to two nodes

5 spilling a coalesced node
is more expensive

BU ZO GA

24 / 54



Coloring, spilling are inter-dependent

Coloring Spilling

1
1 coloring fails

2 less nodes to color
change in code
(load/store)

3 decrease degree of
neighbors

4 coalescing = giving same
color to two nodes

5 spilling a coalesced node
is more expensive

BU ZO GA

24 / 54



Coloring, spilling are inter-dependent

Coloring Spilling

1

2

1 coloring fails

2 less nodes to color
change in code
(load/store)

3 decrease degree of
neighbors

4 coalescing = giving same
color to two nodes

5 spilling a coalesced node
is more expensive

BU ZO GA

24 / 54



Coloring, spilling and coalescing are inter-dependent

Coloring Spilling

1

2

Coalescing3

1 coloring fails

2 less nodes to color
change in code
(load/store)

3 decrease degree of
neighbors

4 coalescing = giving same
color to two nodes

5 spilling a coalesced node
is more expensive

BU ZO GA

24 / 54



Coloring, spilling and coalescing are inter-dependent

Coloring Spilling

1

2

Coalescing3

4

1 coloring fails

2 less nodes to color
change in code
(load/store)

3 decrease degree of
neighbors

4 coalescing = giving same
color to two nodes

5 spilling a coalesced node
is more expensive

BU ZO GA

24 / 54



Coloring, spilling and coalescing are inter-dependent

Coloring Spilling

1

2

Coalescing3

4

5

1 coloring fails

2 less nodes to color
change in code
(load/store)

3 decrease degree of
neighbors

4 coalescing = giving same
color to two nodes

5 spilling a coalesced node
is more expensive

BU ZO GA

24 / 54



Graph coloring allocators in one phase

� Chaitin-Briggs allocator (Briggs, Cooper, Torczon)

� Iterated Register Coalescing (Appel, George)

build simplify coalesce freeze pot. spill select act. spill

Drawbacks of register allocation in one phase

� code more complicated to maintain

� improvements must take the whole allocator into account

� harder to “prioritize” a problem

BU ZO BU

25 / 54



Separating register allocation in two phases

Allows to optimize problems separately:

� priority is given to spilling

� then, coloring/coalescing (without “useless spills”)

How to separate register allocation in two phases?

Here comes the SSA form. . .

Theorem

The interference graph of a program under strict SSA form is chordal.

BU ZO ZO

26 / 54



Separating register allocation in two phases

Allows to optimize problems separately:

� priority is given to spilling

� then, coloring/coalescing (without “useless spills”)

How to separate register allocation in two phases?

Here comes the SSA form. . .

Theorem

The interference graph of a program under strict SSA form is chordal.

BU ZO ZO

26 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a b c

Chordal graphs are perfect and easy to color.

BU ZO MEU

27 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a

b

c

Chordal graphs are perfect and easy to color.

BU ZO MEU

27 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a

b

c

d

e

Chordal graphs are perfect and easy to color.

BU ZO MEU

27 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a

b

c

d

e

Chordal graphs are perfect and easy to color.

BU ZO MEU

27 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a

b

c

d

e

Chordal graphs are perfect and easy to color.

BU ZO MEU

27 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a

b

c

d

e

Chordal graphs are perfect and easy to color.

BU ZO MEU

27 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a

b

c

d

e

Chordal graphs are perfect and easy to color.

BU ZO MEU

27 / 54



Chordal graphs

Definition (Chordal graph)

A graph is chordal iff every cycle of size ≥ 4 has a chord.

a

b

c

d

e

Chordal graphs are perfect and easy to color.

BU ZO MEU

27 / 54



Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses

BU MEU GA

28 / 54



Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses

Example (Straight code converted to SSA form)

a← . . .
...

. . .← a
...

a← . . .
...

. . .← a

a1 ← . . .
...

. . .← a1
...

a2 ← . . .
...

. . .← a2

BU MEU GA

28 / 54



Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses

Example (Conditional code converted to SSA form)

if (. . . )

a← 1 a← 2

· · · ← a

if (. . . )

a1 ← 1 a2 ← 2

a3 ← φ(a1, a2)
· · · ← a3

BU MEU GA

28 / 54



Static Single Assignment

SSA : exactly one textual definition per variable

strictness : SSA where the definition always dominates its uses

Example (strict SSA or SSA with dominance property)

if (. . . )

a1 ← 1 . . .

· · · ← a1

if (. . . )

a1 ← 1 . . .

a2 ← φ(a1,⊥)
· · · ← a2

BU MEU GA

28 / 54



Proof that strict SSA interference graphs are chordal

Theorem

The interference graph of a program under strict SSA form is chordal.

Proof.

a

b

c

d

e

� dominance property

� a and b interfere ⇒ def (a) dominates def (b)
(or the converse)

� direct each edge with dominance

� def (d) is dominated by def (c) and def (e)

� c and e are live at def (d)

BU MEU BU

29 / 54



Proof that strict SSA interference graphs are chordal

Theorem

The interference graph of a program under strict SSA form is chordal.

Proof.

a

b

c

d

e

� dominance property

� a and b interfere ⇒ def (a) dominates def (b)
(or the converse)

� direct each edge with dominance

� def (d) is dominated by def (c) and def (e)

� c and e are live at def (d)

BU MEU BU

29 / 54



Proof that strict SSA interference graphs are chordal

Theorem

The interference graph of a program under strict SSA form is chordal.

Proof.

a

b

c

d

e

� dominance property

� a and b interfere ⇒ def (a) dominates def (b)
(or the converse)

� direct each edge with dominance

� def (d) is dominated by def (c) and def (e)

� c and e are live at def (d)

BU MEU BU

29 / 54



Proof that strict SSA interference graphs are chordal

Theorem

The interference graph of a program under strict SSA form is chordal.

Proof.

a

b

c

d

e

� dominance property

� a and b interfere ⇒ def (a) dominates def (b)
(or the converse)

� direct each edge with dominance

� def (d) is dominated by def (c) and def (e)

� c and e are live at def (d)

BU MEU BU

29 / 54



Proof that strict SSA interference graphs are chordal

Theorem

The interference graph of a program under strict SSA form is chordal.

Proof.

a

b

c

d

e

� dominance property

� a and b interfere ⇒ def (a) dominates def (b)
(or the converse)

� direct each edge with dominance

� def (d) is dominated by def (c) and def (e)

� c and e are live at def (d)

BU MEU BU

29 / 54



Proof that strict SSA interference graphs are chordal

Theorem

The interference graph of a program under strict SSA form is chordal.

Proof.

a

b

c

d

e

� dominance property

� a and b interfere ⇒ def (a) dominates def (b)
(or the converse)

� direct each edge with dominance

� def (d) is dominated by def (c) and def (e)

� c and e are live at def (d)

BU MEU BU

29 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



“Under SSA: the dominance tree”

BB

k’
j’

m

b

c

d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k’ := m+4

j’ := b+d

Live−out: k’ j’

Live−in: k j

Static single assignment form
Live−in: k1 j1

k2 := m+4

j2 := b+d

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k := phi(k1,k2)

j := phi(j1,j2)

� MAXLIVE ≤ r

� Tree scan

CFG

k := m+4

j := b+d

Live−out: k j

Live−in: k j

b := mem[f]

m := mem[j+16]

e := mem[j+8]

f := g+h

h := k−1

g := mem[j+12]

c := e+8

d := c

k

j

g

h

f

e

m

c

d

b

BU MEU ZO

30 / 54



Strict SSA programs are easy to color

Chordal graphs are perfect graphs, hence easy to color. We proved more:

Theorem

Chordal graphs are colorable using Chaitin et al. greedy scheme.
They are greedy-k-colorable.

General program:
NP-complete

strict SSA program:
greedy-k-colorable

Under strict SSA, Maxlive, the maximum number of simultaneously live
variables, is the coloring indicator:

Maxlive ≤ R

BU MEU MEU

31 / 54



Strict SSA programs are easy to color

Chordal graphs are perfect graphs, hence easy to color. We proved more:

Theorem

Chordal graphs are colorable using Chaitin et al. greedy scheme.
They are greedy-k-colorable.

General program:
NP-complete

strict SSA program:
greedy-k-colorable

Under strict SSA, Maxlive, the maximum number of simultaneously live
variables, is the coloring indicator:

Maxlive ≤ R

BU MEU MEU

31 / 54



Register allocation in two phases

Using Maxlive, it seems possible to use a very simple register allocation
scheme:

1 spill variables until Maxlive ≤ R

2 transform program into strict SSA form

3 allocate variables using R registers

4 go out of colored SSA form

Questions

SSA seems to transform an NP-complete problem into polynomial one. . .
Where is the complexity now? What else is simplified?

ZO GA GA

32 / 54



Register allocation in two phases

Using Maxlive, it seems possible to use a very simple register allocation
scheme:

1 spill variables until Maxlive ≤ R

2 transform program into strict SSA form

3 allocate variables using R registers

4 go out of colored SSA form

Questions

SSA seems to transform an NP-complete problem into polynomial one. . .
Where is the complexity now? What else is simplified?

ZO GA GA

32 / 54



What is coalescing?

Goal of coalescing

Removing the register-to-register copies [move a← b]

Numerous move due to:

� live-range splitting to
avoid spilling

� register constraints

� SSA destruction

ZO GA BU

33 / 54



What is coalescing?

Goal of coalescing

Removing the register-to-register copies [move a← b]

Numerous move due to:

� live-range splitting to
avoid spilling

� register constraints

� SSA destruction

a← . . .
b← . . .
c← f(a, b)

a← . . .
b← . . .
move R0,a
move R1,b
call f
move c,R0

ZO GA BU

33 / 54



What is coalescing?

Goal of coalescing

Removing the register-to-register copies [move a← b]

Numerous move due to:

� live-range splitting to
avoid spilling

� register constraints

� SSA destruction

if (. . . )

a1 ← 1 a2 ← 2

a3 ← φ(a1, a2)
· · · ← a3

ZO GA BU

33 / 54



What is coalescing?

Goal of coalescing

Removing the register-to-register copies [move a← b]

Numerous move due to:

� live-range splitting to
avoid spilling

� register constraints

� SSA destruction

if (. . . )

a1 ← 1 a2 ← 2

a3 ← φ(a1, a2)
· · · ← a3

move a3 ← a1 move a3 ← a2

ZO GA BU

33 / 54



Traditional modeling of the coalescing problem

Given an instruction [move a← b]

Fact I Giving the same color to both a and b saves the instruction.

Fact II Merging nodes a and b forces them to have the same color.

Idea Express this as an “affinity” between a and b in the
interference graph to drive the algorithm.

a

b c

d

Merge a and b
ab

c

d

We work on graphs instead of programs.

Demo: split graph in ubigraph

ZO GA ZO

34 / 54



Traditional modeling of the coalescing problem

Given an instruction [move a← b]

Fact I Giving the same color to both a and b saves the instruction.

Fact II Merging nodes a and b forces them to have the same color.

Idea Express this as an “affinity” between a and b in the
interference graph to drive the algorithm.

a

b c

d

Merge a and b
ab

c

d

We work on graphs instead of programs.

Demo: split graph in ubigraph

ZO GA ZO

34 / 54



Traditional modeling of the coalescing problem

Given an instruction [move a← b]

Fact I Giving the same color to both a and b saves the instruction.

Fact II Merging nodes a and b forces them to have the same color.

Idea Express this as an “affinity” between a and b in the
interference graph to drive the algorithm.

a

b c

d

Merge a and b
ab

c

d

We work on graphs instead of programs.

Demo: split graph in ubigraph

ZO GA ZO

34 / 54



Traditional modeling of the coalescing problem

Given an instruction [move a← b]

Fact I Giving the same color to both a and b saves the instruction.

Fact II Merging nodes a and b forces them to have the same color.

Idea Express this as an “affinity” between a and b in the
interference graph to drive the algorithm.

a

b c

d

Merge a and b
ab

c

d

We work on graphs instead of programs.

Demo: split graph in ubigraph

ZO GA ZO

34 / 54



Different coalescing problems

Aggressive

Incremental

Conservative

Optimistic

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

Coalesce as many affinities
as possible.

Incremental

Conservative

Optimistic

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

s1
s2

s3

u
w

v

edge removed
s1

s2

s3

u
w

v

affinity not

coalesced

multiway-cut

Incremental

Conservative

Optimistic

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

s1
s2

s3

u
w

v

edge removed
s1

s2

s3

u
w

v

affinity not

coalesced

multiway-cut

Incremental

Conservative

Coalesce as many affinities as
possible but remains k-colorable.

Optimistic

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

s1
s2

s3

u
w

v

edge removed
s1

s2

s3

u
w

v

affinity not

coalesced

multiway-cut

Incremental

Conservative

a

b

d

c

e

a

b

d

c

e

x〈a,c〉

y〈a,c〉x〈b,a〉

y〈b,a〉

x〈d,b〉

y〈d,b〉 x〈c,d〉

y〈c,d〉

x〈c,e〉

y〈c,e〉

graph k-coloring

Optimistic

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

s1
s2

s3

u
w

v

edge removed
s1

s2

s3

u
w

v

affinity not

coalesced

multiway-cut

Incremental

Conservative

a

b

d

c

e

a

b

d

c

e

x〈a,c〉

y〈a,c〉x〈b,a〉

y〈b,a〉

x〈d,b〉

y〈d,b〉 x〈c,d〉

y〈c,d〉

x〈c,e〉

y〈c,e〉

graph k-coloring

Optimistic

Perform aggressive coalescing, then
de-coalescing to get k-colorable.

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

s1
s2

s3

u
w

v

edge removed
s1

s2

s3

u
w

v

affinity not

coalesced

multiway-cut

Incremental

Conservative

a

b

d

c

e

a

b

d

c

e

x〈a,c〉

y〈a,c〉x〈b,a〉

y〈b,a〉

x〈d,b〉

y〈d,b〉 x〈c,d〉

y〈c,d〉

x〈c,e〉

y〈c,e〉

graph k-coloring

Optimistic

cv

v1
v2

v3cv

c′v

v1

v2

v3

cv

v1

v2

v3

3-vertex-cover

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

s1
s2

s3

u
w

v

edge removed
s1

s2

s3

u
w

v

affinity not

coalesced

multiway-cut

Incremental

Coalesce one affinity while staying
k-colorable.

Conservative

a

b

d

c

e

a

b

d

c

e

x〈a,c〉

y〈a,c〉x〈b,a〉

y〈b,a〉

x〈d,b〉

y〈d,b〉 x〈c,d〉

y〈c,d〉

x〈c,e〉

y〈c,e〉

graph k-coloring

Optimistic

cv

v1
v2

v3cv

c′v

v1

v2

v3

cv

v1

v2

v3

3-vertex-cover

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

s1
s2

s3

u
w

v

edge removed
s1

s2

s3

u
w

v

affinity not

coalesced

multiway-cut

Incremental

T

F

R

ci,1bi,1

ai,1yi,1

ai,2yi,2

ci,2bi,2

ai,3yi,3

ai,4yi,4

3-SAT

NP-complete for general graphs.

Polynomial for chordal graphs.

Conservative

a

b

d

c

e

a

b

d

c

e

x〈a,c〉

y〈a,c〉x〈b,a〉

y〈b,a〉

x〈d,b〉

y〈d,b〉 x〈c,d〉

y〈c,d〉

x〈c,e〉

y〈c,e〉

graph k-coloring

Optimistic

cv

v1
v2

v3cv

c′v

v1

v2

v3

cv

v1

v2

v3

3-vertex-cover

ZO GA MEU

35 / 54



Different coalescing problems

Aggressive

s1
s2

s3

u
w

v

edge removed
s1

s2

s3

u
w

v

affinity not

coalesced

multiway-cut

Incremental

T

F

R

ci,1bi,1

ai,1yi,1

ai,2yi,2

ci,2bi,2

ai,3yi,3

ai,4yi,4

3-SAT

NP-complete for general graphs.

Polynomial for chordal graphs.

Conservative

a

b

d

c

e

a

b

d

c

e

x〈a,c〉

y〈a,c〉x〈b,a〉

y〈b,a〉

x〈d,b〉

y〈d,b〉 x〈c,d〉

y〈c,d〉

x〈c,e〉

y〈c,e〉

graph k-coloring

Optimistic

cv

v1
v2

v3cv

c′v

v1

v2

v3

cv

v1

v2

v3

3-vertex-cover

ZO GA MEU

35 / 54



The problem of incremental coalescing

The goal of incremental is to perform conservative coalescing by
coalescing affinities one by one.

Problem (Incremental coalescing)

Given a k-colorable graph G and two nodes x and y , is it possible to color
G such that x and y have the same color?

Theorem

The incremental coalescing problem is NP-complete.

ZO BU GA

36 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

First, equivalence between graph-3-coloring and 4-SAT.

� 3 nodes for True, False, and X

� 2 nodes for each variable: v and v̄

� . . . and a widget to forbid every
variable of a clause to be false

X

T F

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

First, equivalence between graph-3-coloring and 4-SAT.

� 3 nodes for True, False, and X

� 2 nodes for each variable: v and v̄

� . . . and a widget to forbid every
variable of a clause to be false

X

T F

x

x̄

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

First, equivalence between graph-3-coloring and 4-SAT.

� 3 nodes for True, False, and X

� 2 nodes for each variable: v and v̄

� . . . and a widget to forbid every
variable of a clause to be false

X

T F

x

x̄

y

ȳ

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

First, equivalence between graph-3-coloring and 4-SAT.

� 3 nodes for True, False, and X

� 2 nodes for each variable: v and v̄

� . . . and a widget to forbid every
variable of a clause to be false

X

T F

x

x̄

y

ȳ
zz̄

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

First, equivalence between graph-3-coloring and 4-SAT.

� 3 nodes for True, False, and X

� 2 nodes for each variable: v and v̄

� . . . and a widget to forbid every
variable of a clause to be false

X

T F

x

x̄

y

ȳ
zz̄

w

w̄

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

First, equivalence between graph-3-coloring and 4-SAT.

� 3 nodes for True, False, and X

� 2 nodes for each variable: v and v̄

� . . . and a widget to forbid every
variable of a clause to be false

X

T F

x

x̄

y

ȳ
zz̄

w

w̄

v

v̄

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

First, equivalence between graph-3-coloring and 4-SAT.

� 3 nodes for True, False, and X

� 2 nodes for each variable: v and v̄

� . . . and a widget to forbid every
variable of a clause to be false

X

T F

x

x̄

y

ȳ
zz̄

w

w̄

v

v̄

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

w

z̄

y

x

T

F

X

Need a widget that is 3-colorable only if not all 4 variables are false.

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

w

z̄

y

x

T

F

X

Need a widget that is 3-colorable only if not all 4 variables are false.

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

w

z̄

y

x

T

F

X

If all 4 variables are false, not 3-colorable.

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

w

z̄

y

x

T

F

X

If at least one variable is true

, 3-colorable.

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

w

z̄

y

x

T

F

X

If at least one variable is true

, 3-colorable.

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

w

z̄

y

x

T

F

X

If at least one variable is true, 3-colorable.

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

Now, transform 3-SAT instance into 4-SAT by adding x0 to every clause:

(y ∨ z̄ ∨ w) ∧ · · · ∧ (z ∨ ȳ ∨ u)

becomes

(x0 ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x0 ∨ z ∨ ȳ ∨ u)

Clearly, x0 =True satisfies the equation (i.e., the graph is 3-colorable).

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

Now, transform 3-SAT instance into 4-SAT by adding x0 to every clause:

(y ∨ z̄ ∨ w) ∧ · · · ∧ (z ∨ ȳ ∨ u)

becomes

(x0 ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x0 ∨ z ∨ ȳ ∨ u)

Clearly, x0 =True satisfies the equation (i.e., the graph is 3-colorable).

Now, ask x0 and False to be coalesced. . .

ZO BU BU

37 / 54



Incremental coalescing is NP-complete in the general case

Reduction from 3-SAT. (Similar to reduction of graph-3-coloring from 3-SAT).

Example on (x ∨ y ∨ z̄ ∨ w) ∧ · · · ∧ (x̄ ∨ z ∨ ȳ ∨ u).

To conclude:

3-SAT is true ⇐⇒ 4-SAT is true with x0 = False

⇐⇒ graph is 3-colorable with x0 in red/False

⇐⇒ incremental coalescing of x0 with False is possible

ZO BU BU

37 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g

j

k

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g

j

k

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fdf

Not greedy-3-colorable

g

j

k

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g

j

k

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g

j

k

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd fg

Not greedy-3-colorable

j

k

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g

j

k

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g

j

k

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g jk greedy-3-colorable

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g jk

l

ZO BU ZO

38 / 54



Incremental conservative coalescing

Finding the optimal subset of affinities is hard.

Algorithms do incremental conservative coalescing.

a

b

c

e

h

i

m

fd g jkjkl greedy-3-colorable

ZO BU ZO

38 / 54



A gap
Incremental conservative is not optimal.

Greedy-k-colorable test might be stuck. Multiple node merging necessary
to stay Greedy-k-colorable.

a

b

c

e

h

i

j

k

lm

d f g

ZO BU MEU

39 / 54



A gap
Incremental conservative is not optimal.

Greedy-k-colorable test might be stuck. Multiple node merging necessary
to stay Greedy-k-colorable.

a

b

c

e

h

i

j

k

lm

df g

ZO BU MEU

39 / 54



A gap
Incremental conservative is not optimal.

Greedy-k-colorable test might be stuck. Multiple node merging necessary
to stay Greedy-k-colorable.

a

b

c

e

h

i

j

k

lm

df g

ZO BU MEU

39 / 54



A gap
Incremental conservative is not optimal.

Greedy-k-colorable test might be stuck. Multiple node merging necessary
to stay Greedy-k-colorable.

a

b

c

e

h

i

j

k

lm

dfg

ZO BU MEU

39 / 54



A gap
Incremental conservative is not optimal.

Greedy-k-colorable test might be stucked. Multiple node merging
necessary to stay Greedy-k-colorable.

a

b

c

e

dfg

h

i

m

jklkl

j

ZO ZO GA

40 / 54



Aggressive + decoalescing

Aggressive + de-coalescing scheme: start from a completely aggressively
coalesced graph, give up with some move until it gets Greedy-k-colorable
again.

a

b

c

e

dfg

h

i

m

jkl

ZO ZO BU

41 / 54



Aggressive + decoalescing

Aggressive + de-coalescing scheme: start from a completely aggressively
coalesced graph, give up with some move until it gets Greedy-k-colorable
again.

a

b

c

e

dfg

h

i

m

kl

j

ZO ZO BU

41 / 54



Back to our colored graph
S
ta
ck

a

bc

d e f

g

i

j

c ′

d ′

g ′

ZO ZO ZO

42 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

2

4

32

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Briggs

Resulting node has < k high-degree
neighbours

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’
3 3

33

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

George

All high-degree neighbours are neighbours of
the other node

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

3 3 3

2

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Brute-force

Merge the nodes and check if resulting graph
is greedy-k-colorable

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Chordal

Relies on optimal incremental coalescing for
interval graphs. (May need to merge other nodes

to get a greedy-k-colorable graph.)

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

� Briggs

� George

� Brute-force

� Chordal

Chordal

Relies on optimal incremental coalescing for
interval graphs. (May need to merge other nodes

to get a greedy-k-colorable graph.)

c b

e

g

i

a

d f

j

c’

d’

g’

2

33

3 3 3

4

3

2

ZO ZO MEU

43 / 54



Coalescing two nodes

a bc deg fij

c b

e

g

i

a

d f

j

c’

d’

g’

ZO ZO MEU

43 / 54



Coalescing two nodes

a bc deg fij

c b

e

g

i

a

d f

j

c’

d’

g’

a

d f

j

ZO ZO MEU

43 / 54



Coalescing two nodes. . . with additional merges

a bc deg fij

c b

e

g

i

adfj

ZO ZO MEU

43 / 54



Incremental coalescing for chordal graphs

Problem (Incremental coalescing for chordal graphs)

Given a k-colorable chordal graph G and two nodes x and y . Is it possible
to color G such that x and y have the same color?

This problem is polynomial!

Moreover, if the answer is yes, it is possible to modify G so that x and y are

merged and G stays chordal.

The same question with greedy-k-colorable graphs is still open.

ZO MEU GA

44 / 54



Example on a chordal graph

Let us consider a 3-colorable chordal graph.

Demo: chordal graph in ubigraph
ZO MEU BU

45 / 54



Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.

ZO MEU ZO

46 / 54



Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.

ZO MEU ZO

46 / 54



Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.

ZO MEU ZO

46 / 54



Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.

ZO MEU ZO

46 / 54



Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.

ZO MEU ZO

46 / 54



Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.

ZO MEU ZO

46 / 54



Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.

ZO MEU ZO

46 / 54



Splitting the tree

What happens at one point on the path, color-wise?

Except for the “live-through” variables, the two parts of the tree are
independent.

ZO MEU ZO

46 / 54



Finding a path on the subtrees

z

y

x

r

There exists a 3-coloring in which r and y have the same color.
Idem for r and z .

But there is no coloring in which r and x have the same color.

ZO MEU MEU

47 / 54



Finding a path on the subtrees

z

y

x

r

There exists a 3-coloring in which r and y have the same color.
Idem for r and z .

But there is no coloring in which r and x have the same color.

ZO MEU MEU

47 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



Finding a path on the interval graph
Once the branches are pruned, an interval graph remains.

x
y

MEU GA GA

48 / 54



A simple algorithmic strategy for chordal incremental
coalescing

Building the representation of a chordal graph as subtrees of a tree is
painful.

We have devised an algorithmic strategy that works directly on the graph,
using the same ideas as in Chaitin et al.’s greedy coloring algorithm.

MEU GA BU

49 / 54



Demonstration of coalescing
Demonstration of conservative coalescing on graph #311 of the
“Coalescing Challenge.” (Appel&George)

Demo: conservative coalescing

MEU GA ZO

50 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)

à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)

à aggressive coalescing + de-coalescing

both NP-complete

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorable

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

aggressive

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

aggressivede-coalescing

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing

NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing

both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

aggressivede-coalescing

MEU GA MEU

51 / 54



Theoretical limits of coalescing schemes

� Conservative rules (e.g., Briggs & George)
à incremental coalescing NP-complete (not greedy-check)

� Optimistic coalescing (e.g., Park & Moon)
à aggressive coalescing + de-coalescing both NP-complete

not k-colorableConservative

incremental

B/G

not k-greedy-colorable

aggressivede-coalescing

MEU GA MEU

51 / 54



To summarize. . .

SSA Form is a powerfull property for compilers.

Register allocation under SSA can be separated into two clean phases:

1 spilling

2 coloring/coalescing

Bonus: what will be written left to the pumping shadoks in next slide?

MEU BU GA

52 / 54



That’s all for today

Answer: MEU BU BU
MEU BU BU

53 / 54



Control-flow graph (CFG)

Basic blocks sequence of consecutive statements
Edges control flow (jumps or fall-through)

r

(a, b)← . . .

if b < a

c← a− b
if c > 10

c← 0

c← c mod 10

return c

·(a, b)← . . .
·if b < a then
· c ← a− b
· if c > 10 then
· c ← c mod 10
· endif
·else
· c ← 0
·endif
·return c

Back

MEU BU BU

53 / 54



Tree-shape. Dominance

Dominance relation

� a single entry node r .

� each node reachable from r .

� a dominates b if every path
from r to b contains a.

Properties

� The dominance relation
induces a tree.

1 dominates 4? YES

r=0

1 9

2

5

6

7

8

3

4

1

4

MEU BU BU

53 / 54



Tree-shape. Dominance

Dominance relation

� a single entry node r .

� each node reachable from r .

� a dominates b if every path
from r to b contains a.

Properties

� The dominance relation
induces a tree.

5 dominates 4? NO

r=0

1 9

2

5

6

7

8

3

4

5

4

MEU BU BU

53 / 54



Tree-shape. Dominance

Dominance relation

� a single entry node r .

� each node reachable from r .

� a dominates b if every path
from r to b contains a.

Properties

� The dominance relation
induces a tree.

r=0

1 9

2

5

6

7

8

3

4

MEU BU BU

53 / 54



Static Single Assignment with dominance property

Strict code

Every path from r to a use traverses a
definition

Strict SSA
� SSA: only one definition textually per

variable

� Strict: the definition dominates all uses

r=0

1 9

2

5

6

7

8

3

4

x =

= x

= x

1

MEU BU BU

53 / 54



Liveness: sub-tree of a tree

The live-range of an SSA variable is

the set of program points
between the definition and a use
(without going through the definition again)

� the definition dominates the entire
live-range

� the live-range is a sub-tree of the
dominance-tree

r=0

1

2

3

4

5

6

7

8

9x =

= x

MEU BU BU

53 / 54



Liveness: sub-tree of a tree

The live-range of an SSA variable is

the set of program points
between the definition and a use
(without going through the definition again)

� the definition dominates the entire
live-range

� the live-range is a sub-tree of the
dominance-tree

r=0

1

2

3

4

5

6

7

8

9x =

= x

MEU BU BU

53 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

i

j

c ′

d ′

g ′

1

3

2

4

2

332

44

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

i

j

j

c ′

d ′

g ′

2

2

4

2

332

44

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

i

i

j

j

c ′

d ′

g ′ 1

3

2

332

44

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

g

i

i

j

j

c ′

d ′

g ′

2

2

332

44

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e

f

f

g

g

i

i

j

j

c ′

d ′

g ′1

232

44

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e

f

f

g

g

i

i

j

j

c ′

d ′

g ′
g ′

132

44

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d

e

e

f

f

g

g

i

i

j

j

c ′

d ′

g ′
g ′

22

44

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′

g ′
g ′

2

33

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′ d ′

g ′
g ′22

3

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

b

bc

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′ d ′

g ′
g ′1

2

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

b

b

c

c

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′ d ′

g ′
g ′

1

1

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a a

b

b

c

c

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′ d ′

g ′
g ′

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a a

b

b

c

c

d
d

e

e

f

f

g

g

i

i

j

j
c ′

c ′

d ′ d ′

g ′
g ′

Hi-degree node
Low-degree node

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a a

b

b

c

c

d
d

e

e

f

f

g

g

i

i

j

j
c ′

c ′

d ′ d ′

g ′
g ′

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a a

b

b

c

c

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′ d ′

g ′
g ′

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

b

b

c

c

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′ d ′

g ′
g ′

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

b

bc

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′ d ′

g ′
g ′

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′ d ′

g ′
g ′

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d
d

e

e

f

f

g

g

i

i

j

j

c ′

d ′

g ′
g ′

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d

e

e

f

f

g

g

i

i

j

j

c ′

d ′

g ′
g ′

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e

f

f

g

g

i

i

j

j

c ′

d ′

g ′
g ′

Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e

f

f

g

g

i

i

j

j

c ′

d ′

g ′
Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

g

i

i

j

j

c ′

d ′

g ′
Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

i

i

j

j

c ′

d ′

g ′
Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

i

j

j

c ′

d ′

g ′
Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

i

j

c ′

d ′

g ′
Back

MEU BU ZO

54 / 54



Greedy-k-colorable graphs

k-colorability is hard to check, but greedy-k-colorability is easy.

Check greedy-k-colorability: simplify nodes with < k neighbors.

S
ta
ck

a

bc

d e f

g

i

j

c ′

d ′

g ′
Back

MEU BU ZO

54 / 54


	SSA Form
	Register allocation

